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Non-linear dispersion of water waves 

By G. B. WHITHAM 
California Institute of Technology 

(Received 25 February 1966) 

The slow dispersion of non-linear water waves is studied by the general theory 
developed in an earlier paper (Whitham 1965b). The average Lagrangian is cal- 
culated from the Stokes expansion for periodic wave trains in water of arbitrary 
depth. This Lagrangian can be used for the various applications described in the 
above reference. In  this paper, the crucial question of the ‘type ? of the differen- 
tial equations for the wave-train parameters (local amplitude? wave-number? 
etc.) is established. The equations are hyperbolic or elliptic according to whether 
~ h ,  is less than or greater than 1.36, where K is the wave-number per 3n and h, 
is the undisturbed depth. In  the hyperbolic case, changes in the wave train 
propagate and the characteristic velocities give generalizations of the linear 
group velocity. In  the elliptic case, modulations in the wave train grow exponen- 
tially and a periodic wave train will be unstable in this sense; thus, periodic wave 
trains on water will be unstable if K h ,  > 1.36. The instability of deep-water 
waves, --f coy was discovered in a different way by Benjamin (1966). The 
relation between the two approaches is explained. 

1. Introduction 
In  recent papers (Whitham 1965a, b) ,  a general theory has been given for the 

slow dispersion of non-linear wave trains. A uniform periodic wave train is 
specified by certain parameters such as amplitude, wave-number, etc. ; the theory 
treats non-uniform wave trains in which these parameters vary slowly in space 
and time, in the sense that the changes in one wavelength and in one period are 
relatively small. All the problems considered to be typical in this theory stem 
from variational principles, and the mathematics is tremendously simplified by 
suitable use of the corresponding Lagrangians. 

The Korteweg-de Vries and Boussinesq equations for long water waves were 
included as examples in the earlier papers, but it was not obvious that the full 
equations of water waves would fit into the same pattern. In the approximations 
for long waves, the dependence of the flow on the vertical co-ordinate y is elimi- 
nated to give equations for functions of the horizontal co-ordinate x and the 
time t. It was easy to spot the variational principles leading to these (x,t) 
equations. But, a corresponding variational principle for the full equations of 
water waves, including the free-surface conditions, did not seem to be known. 
It was also thought that the y-dependence, with the wave propagation occurring 
only in the(x, t )  dependence, may require crucial changes in the general approach. 
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Now, Luke (1966) has shown that the equations of irrotational water waves 
follow completely from the variational principle 

where $(x, y, t )  is the velocity potential, y = ~ ( x ,  t )  is the free surface, y = - h, is 
the rigid bottom, and g is the acceleration of gravity. It turns out that this 
variational principle was given by Bateman (1944), but he did not note that the 
free-surface conditions (the essential difficulty for water waves) also follow. The 
general theory of dispersion can now be applied to this system with the Lagran- 
gian given in (1) and follows the standard pattern. The y-dependence does not 
give any trouble; it  is integrated out in (1). 

Without the variational principle, one can take the required properties of 
uniform wave trains directly from the differential equations and then calculate a 
Lagrangian equal to the kinetic energy minus the potential energy, i.e. 

and use this quantity to study the slowly varying wave trains. For any solution, 
(1) and (2) are equal, but varying (2) without further restrictions on q5 yields only 
Laplace’s equation and does not give the correct boundary conditions. 

In this paper the equatioiis for slow variations in the amplitude, wave-number 
etc. will be established for arbitrary depth. Of course, there is no explicit exact 
soluticjn for the uniform wave train; it is calculated by the Stokes expansion in 
powers of amplitude. The theory for slowly varying wave trains will be worked 
out in the same way. The Stokes expansion breaks down for long waves, but these 
have been covered in the previous papers. The aaalysis is carried out for the case 
o f  one horizontal space dimension, but the extension to two dimensions is 
straightforward. 

For finite depth, as in the long-wave approximation (Whitham 1965b), varia- 
tions in mean height and mean fluid velocity occur and they are coupled non- 
linearly with variations of the amplitude and wave-number. These four quantities 
are fundamental parameters of the wave train and ultimately a coupled set of 
four differential equations is obtained for them. The frequency and a sixth 
variable, a ‘pseudo-frequency ’, are also fundamental in the analysis but are 
functionally related with the other four. Lighthill (1965), in his application of the 
theory, assumes from the outset that the mean height and mean velocity will 
play no role in the case of infinitely deep water. For long waves a similar assump- 
tion would lead to completely wrong results, so the present writer felt that a 
satisfactory treatment would have to m a i t  for the complete analysis. It does 
turn out, however, that changes in mean height and velocity uncouple from the 
changes in amplitude and wave-number in the limit when the depth is large 
compared with the wavelength. 
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In  the case of long waves, the equations for the slow variations are hyperbolic, 
showing that changes in the wave train propagate in a finite way. Lighthill’s 
application of the theory to deep-water waves showed that the equations are 
elliptic in that case. This means, for example, that a small sinusoidal modulation 
of the amplitude or wave-number will grow in time, and in that sense the wave 
is unstable. This result was discovered in a different approach by Benjamin (1966) 
by a subtle use of the traditional approach to stability problems. His theory is 
limited to small modulations of a nearly linear main wave but it is not limited to 
slowly varying changes. Thus the modulation frequency does not need to be 
small. He finds a cut-off for the exponential growth when the difference between 
the two frequencies reaches a certain value. 

The analysis given here for finite depth allows a study of the change of type 
of the dispersion equations from hyperbolic to elliptic equations as the ratio of 
depth to wavelength increases. The change occurs when ~ h ,  = 1.36, where K is 
the wave-number per 2n, and h, is the undisturbed depth. The change of type 
depends crucially on the coupling between changes in mean depth and velocity 
with changes in wave-number and amplitude. The non-linear dependence of 
frequency on amplitude gives a contribution tending towards elliptic equations 
while the non-linear coupling gives a contribution in the hyperbolic direction. 

2. The average Lagrangian for Stokes waves 
The uniform periodic solution of the water wave equations takes the form 

= ~ ( e ) ,  e = KX-wt ,  

9 = px-yt+@(e,Y), 
(3) 

where K ,  w ,  p, y are constant parameters. The pair ( K , o )  are the wave-number 
and frequency, and the phase function 6 will be normalized so that i t  increases by 
27r in one period. The linear term (pz - yt)  must be allowed in q5, since it is only 
the derivatives of q5 that represent periodic physical quantities. Physically p is 
the mean velocity, but the meaning of y is less clear; it corresponds to absorbing 
the Bernoulli constant into the potential. Mathematically (p, y )  act like a pseudo 
wave-number and frequency in 9 corresponding to the real wave-number and 
frequency ( K ,  w )  in 0. In  the expressions for N and there are two further main 
parameters taken to be the amplitude a and the mean value b of the height 7. 
Thus, the solution depends upon two triads of parameters ( K ,  w ,  a)  and (p, y,  b )  
just as in the long-wave case (Whitham 1965b). 

For non-uniform wave trains the form of the solution is generalized slightly to 

and the quantities ( K ,  w ,  a) ,  (p, y ,  b )  are all taken to be slowly varying functions of 
space and time instead of constant parameters. The equations for these functions 
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are derived from an averaged form of the variational principle. The general 
method (Whitham 1965b) is to calculate the average Lagrangian over one 
wavelength, i .e. 

from the uniform wave-train solution. Then, for the non-uniform wave train, 
where the sc,ale is large compared with one wavelength, the averaged variational 
principle 

6 Y d x d t = O  ss 
is used, with K ,  w ,  p, y restricted by (5). The Euler equations are 

Sa = 0, Yb= 0, 

a a a a 
- - 9 u + - 9 K = o ,  at ax - - Y 7 + - $ P g = O ,  at ax 

The system is completed by eliminating 0 and 1c. in ( 5 )  to give 

aK aw ap aY -+- = 0, -+- = 0. at ax at ax (9) 

The Stokes expansion for the uniform wave train is in powers of K a .  The series 
is not uniformly valid as ~ h ,  -+ 0, however, and K a  must be small compared with 
( ~ h , ) ~  in that limit. The expansion is obtained from the Fourier series 

co 
N(B) = b+acosB+xa,cosnB, 

2 

(11) 
* An and @ = C - cosh nK(h, + y) sin nB, 

where the expansion for CD has been chosen to satisfy Laplace’s equation and the 
boundary condition a@/@ = 0 on the bottom y = -ho. The mean height b and 
the amplitude a are considered to be the fundamental coefficients in this solution; 
the other coefficients a,, A ,  are determined in terms of them by satisfying the 
free-surface conditions. This can be done most conveniently, in the present 
context, by calculating the average Lagrangian (6) as a function of all the coeffi- 
cients and using the variational equations 

1 %  

2qa* = 0, ykn = 0, (12) 

as well as (7) and (8). In  the solution of these non-linear relations by successive 
approximations, it  becomes clear that Ka, and KA, are 0(sn),  where E is a typical 
value of KU. 

L = ( + p 2 - y ) ( h o + N ) + + g N 2 - ( w - p K ) /  -% @ , d y + / B  --ha (+K2@g++@i)dy. (13) 

First, from (1) and (3), 
N 
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After substituting the series (1 1) and carrying out the integrations with respect 
to y, we obtain 

0 - P K  An L = (&p2 - y )  (h  + M )  + &b2 + gbM+ &g1M2- __ C - sinh nK(h + M )  cos ne 
K ,=, n 

m n-1 sinh nlc(h + M )  
+ i K  c c ArAn-r(. cos (n  - 2r) 0 

n=2 T=l 

sinh (n - 2r) ~ ( h  + M )  cos + - 
n- 2r 

where h is the total mean depth 
h = h,+b, 

and 
m 

1 
M(B)  = N(8)  - b = C a, cosn0, 

a, = a. 

The mean value of (14) over one period is 

+ K(&P114 +P12 A1442 + *P22A3 + O(@L 
where 

p 1  = &Ka, cosh Kh + $K2ala2 sinh ~h + & ~ ~ a !  cosh ~ h ,  

p2 = &Ka2 cosh 2 ~ h  + &c2a2,sinh 2 ~ h ,  

pl l  = $ sinh 2 ~ h  + )K2ai sinh 2 ~ h  + $Ka,, 

p12 = $Kal cash 3Kh, 

,u22 = + sinh 4 ~ h .  

The variation with respect to A ,  and A ,  gives 

0-pK 
9 A *  Pl2AI +P22A2 - 7 p, = 0. 

With these relations for A ,  and A,, the terms involving A,, A ,  in (17) may be 
evaluated as 

Hence, the expression for 2 becomes 

9 = (+p2 - y )  h + &gb2 + )ga? + $gai 

where T = tanh Kh, and terms of order e6 have again been neglected. 
16-3 
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The quantities (p, y ,  b) and a2 are O($) so that the lowest-order approximation, 
corresponding to the usual linear theory, is 

(The term - yh, does not contribute in the final equations and could be omitted.) 
Then, the variation with respect to a, gives the usual linear dispersion relation 

W 2  = W i ( K )  + O(E2), (21) 

where o;(K) = gKtanhKh,. ( 2 2 )  

In  view of this, terms of order 

will not be needed in (19) and it may be simplified to 

where To = tanh Kh,. The variation with respect to a2 now gives the relation 

a2 = ((3 - T;)/4T,3} ~ a f ,  (24) 
and (23) reduces to 

where 

and Do = (ST$- 1OTt + 9)/8T,3. (27) 

The expression in (25)  is the final form of the Lagrangian as a function of the two 
triads ( K ,  w ,  a) and (p, y ,  b).  It is often convenient to  use E ,  which is proportional 
to the energy density, as a variable in place of a. 

The variation with respect to a, or equivalently with respect to E ,  gives the 
non-linear dispersion relation 

The dependence on /3 and b (through h = h,+b) should 
the dependence on E.  

(28) 

be noticed, as well as 
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3. Linear waves 
For linear wave trains the average Lagrangian always takes the form 

9 = G(w, K )  E ,  

where G(w, K )  = 0 is the dispersion relation (Whitham 19653). 
This is verified for the present case; in the lowest approximation, 

E = iga2, to; = gKtanhKhO. 

The dispersion of the wave train is then governed by the equations 

agw asK aK aW 
-__ f- = o ,  -+- = o .  at ax at ax 

From (29), we have 

a K  &do -+- = 0, 
at ax 

where Go is the linear group velocity 

sinh ~ h ,  cosh ~ h ,  

Co = W,/K.  I 
(30) and (31) may be simplified to 

aK aK -+c - = 0. at O a X  
(34) 

A detailed discussion of these equations was given in the earlier references, 
but a brief resume will help in the study of the non-linear case. The equations 
determine the laws of propagation of changes in wave-number K and energy 
E with the group velocity C,. Treated as a system, the pair (33) and (34) is not 
hyperbolic, since two independent combinations in characteristic form cannot 
be found. However, (34) can be solved fist to give K = const. on the characteristics 
dx/dt = C,(K), which are straight lines in the (x, +plane as a consequence. With 
K determined, (33) can be written as a simple linear equation 

dE/d t  = - C ~ ( K )  K~ E (35) 

along the same characteristics. In  this sense, the equations are hyperbolic and 
CO&) is a double characteristic velocity. (35) can be re-cast to show that 
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the energy between two neighbouring characteristics remains constant with 
time. 

As the next section will show, the effects of the small non-linearity of the basic 
wave train do not give merely a small correction to these results; the whole 
structure of the equations is different. 

4. Non-linear waves 
For non-linear waves, the second-order quantities (p, y ,  b)  are included and the 

full set of equations ( 7 ) ,  (8) ,  (9) is used with the Lagrangian given by (25). The 
dispersion relation follows from ga = 0 (or 2’ = 0) and it has been noted 
already in (28). It may be expanded, remembering that h = h,+ b ,  to give 

where B, = gh, K / 2 W 0  Gosh2 KhO = C, - &,. 
In  a similar way, the second functional relation 2’’ = 0 gives 

(36) 

(37) 

for the ‘pseudo frequency’ y. 
The other four derivatives of 2’ are 

E E 

wo w0 
€41, yK = c, - + 0(e4), 9 = - - + O (  

SU = - (h, + b )  + O(c4), f $pg = ph, + (E/c,)  + O(e4).  

Substituting in (8), (9) and omitting error terms of order @, we have 

(39) 

(40) 

= 0,  (41) 

(42) 

at +a ax (ph,+$) = 0, 

To the same order of approximation, (39) can be replaced by 

since 
from (41). 

aE a 
-+ - (CoE)  = 0, 
at ax (43) 

(44) 
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These equations can be interpreted in physical terms. In  (40), b and p measure 
the mean height and mean fluid velocity; hence, (40) is conservation of mass and 
it is seen that the additional transport due to the waves is E/co. (42) is related 
to the momentum equation but it is not quite in the correct form as it stands. 
The momentum density is the same as the mass flux, i.e. 

P o  + (E/co). 

Therefore, from (39), (42) and (44), the equation for conservation of momentum 
can be written 

2 at ( /3ho+z)  + ~ [ g h o b + ( B o + C o )  

The additional momentum flux due to the waves is 

( B ~ + C ~ ) - =  E (aG-$)E.  co 
CO 

(43) is clearly the energy equation for the waves. The total energy equation, 
including the mean flow etc., can also be derived. These expressions for 
mass flux, etc. have all been derived previously (Longuet-Higgins & Stewart 
1960). In  fact a more approximate version of (40)-(43) was discussed before 
(Whitham 1962); however, the crucial terms in w beyond the linear approxima- 
tion were not included, and the full significance of the equations was not really 
appreciated. 

Deepwater waves 

In  the deep-water limit ~ h ,  -+ 00, co - d ( g / K ) ,  Co N , / (g/K),  Do -+ 1, Bo/co + 0. 
It is then clear that the term KB, b/ho in (41) may be neglected; its ratio to wo is 

Since p is the mean velocity over the whole depth, one would certainly expect 
in this limit of infinite depth that p -+ 0, and KP can also be neglected in (41). The 
orders of b and ,8 can be estimated more carefully from (40) and (42). To a first 
approximation, changes in E propagate with the linear group velocity C,. There- 
fore, in considering the resultant changes in b and p, the t-derivatives in (40) and 
(42) are Co times the corresponding x-derivatives. Thus, 

-COb+&+(E/co) = 0, -CoP+gb+(BO/cohO)E=O; 

Perhaps the most important point is to note that the extra volume flux E/co, 
due to the waves, is balanced in (40) by a small mean counter-flow proportional 
to l/ho, rather than by changes in the mean height b.  
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It is then clear that, in this limit, equations (41) and (43) for K and E uncouple 
from the other pair and we have 

From (44)) the E in (48) can always be replaced by E multiplied by any function 
of K .  Therefore, (47) and (48) are equivalent to 

K~ + Co K ,  + ( K ~ E / c ~ ) ,  = 0, (49) 

The hyperbolic or elliptic nature of these equations may be established by 
searching for linear combinations that are in characteristic form. If m times (49) 
is added to (50)) the resulting combination would be in characteristic form only if 

m2 = ( K 2 8 / C O )  c;. 
Since Ch < 0, m is imaginary and the equations are elliptic. The significance of 
this is discussed later. 

General case of $finite depth 

In  general, the four equations (40)-(43) are coupled together and the structure 
of the whole system must be considered. It is convenient to work with € = E/co 
in place of E ;  as noted before, by appeal to (44)) (42) takes the same form in 8. 
Accordingly, the set of equations is written as 

Kt + co K ,  + K 2 0 0  &% + (KBoIho) bx + K p ,  + FK, = 0, (51) 

where F is a term of order 8. It turns out that it is both inconsistent and un- 
necessary to retain the term FK, in (51). The operator on K becomes 

apt + (CO + F )  apx,  

whereas a similar correction to the operator a/at+C,alax on € in ( 5 2 )  would 
depend upon terms 88’ which have been omitted. That this correction to the 
operator is unnecessary in both equations is seen as the analysis progresses. It is 
simplest to neglect the term at the outset and remember its effect as that of a 
term O ( 8 )  added to Co. 

To find the characteristics of (51) to (54)) linear combinations are considered 
in which multiples I , ,  I , ,  l3 of (52 ) )  (53)) (54)) respectively, are added to (51). For 
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the derivatives of K ,  E, b,  /3 to be in the same combination 

409 

a a  
-+C- 
at ax’ 

the multipliers li and the velocity C must satisfy 

C = Co + I1 Ch 8 + l3(BJho) 8, 
11 C = ~ ~ 0 0  + 
12 C = (~Bo/ho) + 63 g ,  
13C = Kf12ho. 

co + 12 + l3(.Bo/ho), 

The errors are factors 1 + O(&) in every term displayed. Solving this set of 
algebraic equations, we have 

(55) 1 C-C,, K BA B,+C 
ll=m+-7- h, c, gh, - c2 ’ 0 

Bo+C 13=-K- K gh,+B,C 1 - -- 
2 -  h, gh,-C2 ’ gh, - C2’ 

and 

The errors in the equation for C are proportional to &(C - C,) and 6 2 .  These errors 
take care of the F term, as may be seen by noting the effect of a term proportional 
to & added to C,. The second term in (56) is retained even though it is proportional 
to (C - C,) &, since roots close to k ,/(gh,) occur. 

Two of the roots of (56) tend to C, as & + 0 and correspond to the double root 
C, of the linear wave theory. For these two roots, the term proportional to 
(C - C,,) d can be neglected with the errors, and the roots are given approximately 

Since Ch < 0 ,  these roots are real if 

(gh, + 2Bo C, + BE)/(gho - CE) > ~ h ,  0,. (58) 

The terms on the left of this inequality come from the coupling with mean height 
and velocity, b and p, while the term on the right comes from the non-linear 
dependence of the frequency on the amplitude. If the roots given in (57) are real, 
the double characteristic of linear waves splits into two distinct characteristics 
with velocities which differ from C, by an amount proportional to the amplitude 
,/(SE/g). The fact that the correction is proportional to ,/E rather than E itself is 
due to the double root in the limit E --f 0. This also explains why the term F i n  (51) 
could be neglected. 

The other two roots of (56)  tend to k ,/(gh,) as & -f 0, and correspond to the 
characteristics of simple shallow-water theory. The correction proportional to & 
can be determined from (56), but it suffices for the present discussion to know 
that these roots are real. 
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The inequality (58)  determines the type of the system. If ( 5 8 )  holds, the system 
is hyperbolic; otherwise it has an elliptic part. The quantities in ( 5 8 )  are defined 
in (37), (32) and (37). The dependence on gh, cancels out, and the inequality 
depends on the value of K h ,  only. As K h ,  + m, the left-hand side tends to 1 while 
the right-hand side is asymptotic to Kh,; hence the equations are elliptic for 
sufficiently large values of Kh,. As K h ,  --f 0, KhODO N 9/(8K2hg) while the left-hand 
side of (58) is asymptotic to 9 / ( 4 ~ ~ h g ) ;  hence, the equations are hyperbolic for 
sufficiently small values of Kh,. The critical value is found to be K h ,  = 1-36. 

5. Significance of the type of the averaged equations 
If the averaged equations are hyperbolic, changes in the wave-train parameters 

propagate according to the usual theory of characteristics. The characteristic 
velocities provide a generalization of the linear group velocity to non-linear 
problems. In the non-linear theory, the splitting of the double characteristics 
C = C, into two separate families of characteristics introduces important changes 
in the nature of the solutions. This has been discussed in detail in previous papers. 

When the equations have an elliptic part, there is a certain kind of instability 
in the wave train. Consider a general system of quasi-linear equations: 

U,+AU, = 0, 

where U is a column vector, A is the coefficient matrix with elements depending 
upon U .  Our averaged equations are of this form. Now, consider a small perturba- 
tion of U on a constant solution U,. The linearized equation for the perturbation 
u = U-U, is 

where A ,  = A(U,). Elementary solutions of (59)  can be found in the form 

ut+AouZ = 0, (59) 

= 0 eill(z-Qt). (60) 

This is a solution of (59) provided 

(A,-CI)UO = 0, 

where I is the unit matrix. The condition for non-trivial solutions is 

det IA,- CII = 0. (61) 

The eigenvalues C are just the characteristic velocities of the system. If they are 
real, the solution (60) remains a small perturbation. If there are imaginary roots, 
corresponding to an elliptic part, some terms in the perturbation solution (60) 
will have exponential growth with time. Thus aperiodic wave train will ultimately 
break up into some other form. 

For water waves, therefore, a periodic wave train should be unstable in this 
sense when ~ h ,  > 1-36. 
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6. Relation with Benjamin's approach 
Benjamin (1966) found the instability result for the deep-water limit. In  his 

approach, the analysis depends upon a subtle kind of resonance between two 
small modulations with wave-number K & p and the main wave K .  He starts from 
a solution of the form 

4 = ~ ( t )  eiKx + a*(t) e - i K X  + a+(t) ei(K+P)Z + a$(t) e - i ( K + / d X  

+ a-(t) ei (K-P)X  + a* - ( t )  e-i(K-P)Z ( 62) 

where a+(t) and a-(t) are small compared with a(t). (The asterisk denotes complex 
conjugates.) In  the linear theory, this would be a solution if 

However, if the linear solution is taken as the first term in a nafve expansion in 
amplitude, a resonance in the higher-order cubic terms produces terms with 
denominators proportional to p, and the expansion is not uniformly valid as 
p 3 0. The resonance arises in the cubic terms because, for example, the product 
of (aeiKx)2 and a$ e-i(K+P)x produces a forcing term a2a: ei(K-fl)Z which has the 
same wave-number as one of the terms in (62). To remedy this, the coefficients 
a(t), a*(t) must be determined in a way that includes such higher-order resonant 
terms, which repeat the basic wave-numbers 2 K ,  & ( K  f p). The revised coeffi- 
cients a,(t) may still be oscillatory, indicating stability, or have an exponential 
growth, indicating instability and transfer of energy to the side bands K & p. 

The relation with the present analysis is that (62) can be written as a slowly 
varying wave train in the case p < K. For consider a slowly varying wave train 

4 = $a ei8 + +a* e-is (63) 

where a, O,, 8, are slowly varying functions. Suppose in particular that 

a = a,+a,, 8 = 8,+81, 

where a, is constant, 8, = K X  - wt and .,/ao < 1,8,/8, < 1. That is, a, eiso is a basic 
wave train and a,, 8, represent a small modulation both in amplitude and phase. 
The basic wave train has small enough amplitude to keep the sinusoidal form but 
the dispersion relation is non-linear: w depends on a, as well as K .  Now expand 
(63) as 4 = a, eiso +a, eieo + i8, a, eieo + conjugate, 

and take 

Since 8, = KX - wt, it  is clear that (64) can then be put in the form (62) and vice 
versa. The subtle interplay between the two side bands ~ + p  and K - P  in 
Benjamin's approach appears more straightforward here and is included auto- 
matically by the coupling of the amplitude and phase changes. The functions in 
(65) are slowly varying provided ,u < K. 

When the details are followed through, the results of the two theories agree 
for p < K. As noted already, Benjamin's theory does not require p < K. On the 
other hand, the present theory would go through if the basic wave train were 
highly non-linear and could not be approximated by the sinusoidal form. 

a, = A ,  e+x + A- e-W, 8, = @+ eipz + @ - e-@x. (65) 
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The comparison of the methods has been given for the deepwater case in 
which changes in the mean height and mean velocity can be ignored. The com- 
parison for the more general case is similar. 

This research was supported by the Office of Naval Research under contract 
Nonr-220(56). Reproduction in whole or in part is permitted for any purpose of 
the United States Government. 
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